Analyzing NGS data from sequencing sgRNA libraries cloned with CRISPR Clue, using *sgRNA_counter.py*

This protocol provides a detailed description on how to analyze NGS data obtained from sequencing either sgRNA libraries or oligo pools cloned into the TOPO vector, using the CRISPR Clue pipeline. This description assumes you have installed Python and all dependencies necessary, as described in "Installing Python on your machine".

This Python script allows you to map NGS reads to a sgRNA library or Clue oligo pool of choice. It will generate a read count table as well as density and bar plots for you, showing you the distribution of sgRNAs. To do so, the script requires a number of inputs:

Flag	Description	Example
-fq	File name of the fastq file(s) containing your NGS data, you	exp1.fastq,exp2.fastq
fastq	can enter several fastq file names separated by commas if	
	they are to be mapped to the same library	
-I	File name of your sgRNA library or oligo pool you want to	my_library1.csv
library	map your NGS reads to	
-t	Type of library you are mapping to (sgRNA sub-library or	sub-lib <u>or</u> oligo-pool
type	oligo pool)	
-v	Determines the sgRNA vector system you are using (either	H1 <u>or</u> U6
vector	H1 or U6 promoter containing vectors from the Jeremias or	
	Zhang labs, respectively)	
-0	Name of the output file for the read count table that will be	Exp1_output
output	generated. Note that all plots will be named as the fastq file	

To get started, place all files you need together with the Python script in the same folder.

Now, open the command line by simply typing "cmd" into your search bar. Then navigate to your folder by typing "cd path/to/your/folder" and hitting enter.

So far, so good. Now it is time to run the script, which is as simple as typing the following:

Hit enter and wait for the script to finish.

By now you will find several new files in your folder, which contain the results of your analysis.

📙 💆 📙 🗢 Example								
Datei Start Freigeben Ansicht								
$\leftarrow \rightarrow \checkmark \uparrow$ \blacktriangleright Example $\checkmark \eth$								
	^	Name	Änderungsdatum	Тур	Größe			
Ar Schnellzugriff		exp1.fastqsanger	29.10.2019 08:46	FASTQSANGER-D	454.779 KB			
Desktop	*	exp1_bar.png	24.02.2020 16:12	PNG-Datei	129 KB			
🕂 Downloads	*	exp1_density.png	24.02.2020 16:12	PNG-Datei	203 KB			
🖆 Dokumente	*	🔊 my_library1.csv	24.02.2020 15:55	Microsoft Excel-C	16 KB			
📰 Bilder	*	my_output.txt	24.02.2020 16:12	Textdokument	11 KB			
CLUE_fun		sgRNA_counter.py	24.02.2020 16:09	PY-Datei	7 KB			
GeneWiz Daten								

Congratulations! You just analyzed your NGS data and mapped it to your sgRNA library.